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The intersection of mathematics and computational modeling with the mechanics of
materials and structural engineering continues to yield substantial advancements in both
theoretical and applied domains. This Special Issue, titled “Mathematical and Computa-
tional Modelling in Mechanics of Materials and Structures”, brings together contributions
from researchers worldwide, each advancing methodologies and insights that are crucial
for addressing the complex challenges in structural resilience, material behaviour, and
dynamic system stability. The issue presents a diverse collection of research that pushes the
boundaries of how we understand and model intricate material and structural interactions
across various scales and applications.

Structural reliability and robustness are central themes, as exemplified by Jin, Liu,
and He [1], who developed a mathematical model that integrates structural reliability
and robustness through a strain energy evaluation index. Their findings provide a robust
framework for understanding how structures withstand damage, enabling more informed
maintenance and lifecycle management strategies. In a similar vein, the study by Moumen
et al. [2] examines porous–elastic systems, focusing on nonlinear damping, infinite memory,
and distributed delay. They demonstrate the well-posedness and stability of these systems,
which are critical for applications involving complex wave propagation.

Dynamic behaviour and stability analyses are also prominent topics in this Issue.
Usman, Abdallah, and Imran [3] apply an asymptotic perturbation method to investi-
gate nonlinear stability in a ship rolling model, revealing how bifurcation parameters
impact stability and making a vital contribution to the understanding of dynamic mar-
itime environments. Extending this focus to dynamic systems, Grau Turuelo and Bre-
itkopf [4] introduce an algebraic model to predict high-temperature annealed structures in
silicon, which has practical applications for industries that rely on materials exposed to
extreme conditions.

A meshless computational strategy has been developed to overcome challenges in
analyzing higher-order strain gradient plate models, particularly for complex geometries
and microscale effects. This approach eliminates the need for traditional meshing, offer-
ing both computational efficiency and improved accuracy in capturing refined material
behaviors. The study demonstrates significant potential for applications in micro- and
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nano-engineering, particularly in the design of high-performance structures. The method
and its findings are presented by Fabbrocino et al. [5], providing an advanced framework
for modeling strain gradient continua.

The phenomenon of self-synchronization between non-ideal sources mounted on
rectangular plates is explored with a focus on how time delay influences synchroniza-
tion dynamics. The study highlights conditions leading to fast or late synchronization,
offering new insights into vibration control and energy efficiency in mechanical systems.
By combining theoretical analysis with computational modeling, this work provides a
deeper understanding of synchronization in non-ideal systems. These findings, as dis-
cussed by Djanan et al. [6], have practical applications in optimizing systems sensitive to
vibratory responses.

The behavior of porous-elastic materials under time-dependent swelling is analyzed
through a theoretical framework that incorporates memory-type constitutive models. This
approach captures the intricate interplay between swelling and deformation, offering
predictive tools for applications in fields like geomechanics and bioengineering. Compu-
tational simulations validate the theoretical model, showcasing the material’s complex
responses to various loading conditions. The work, conducted by Al-Mahdi et al. [7],
provides valuable insights into optimizing porous-elastic systems for diverse engineering
and biomedical applications.

Material properties, particularly those of composites and auxetic structures, are ex-
plored from multiple perspectives. Sotiropoulos and Tserpes [8] apply an interval-based
method to assess uncertainty in unidirectional composite materials, quantifying the effects
of material variability on structural performance. This complements the work by Yin
et al. [9], who introduce a novel orthogonal polynomial method for auxetic structures.
Their method accounts for epistemic uncertainties, significantly enhancing the predictabil-
ity of auxetic materials, which are valued for their unusual deformation characteristics.
Another standout pieces of composite research, by Pittella et al. [10], provides a microwave
characterization of PA6/GNP composites. Their findings have implications for electromag-
netic interference shielding, showcasing how composite properties can be optimized for
advanced electronic applications.

Several contributions advance computational methodologies to improve the accu-
racy and efficiency of modeling. Al-Gharabli et al. [11] analyze viscoelastic plates with
nonlinear frictional damping, deriving decay rate estimates that are critical for stability
assessments in viscoelastic systems. Additionally, Naderian et al. [12] introduce an inte-
grated finite strip method for simulating hybrid fiber-reinforced polymer bridge systems.
Their model enhances the efficiency of analyzing these structures, which is particularly
relevant in ultra-long span bridges. Furthermore, the research by Mirzaee Kakhki et al. [13]
on high-order shape functions using the semi-analytical finite element (SAFE) method
highlights how wave propagation problems can be effectively addressed using advanced
computational techniques.

The issue also delves into the use of innovative modeling approaches for specific
applications. In biomedical engineering, Gupta and Chanda [14] utilize hierarchical
metamaterial-based patterns for skin-grafting applications. Their findings demonstrate the
potential for greater expansion in skin grafts, presenting a breakthrough for burn treatment
and tissue engineering. Similarly, Garg et al. [15] investigate the use of adhesive materials
for crown and crown–root fractures in dental applications, utilizing computational model-
ing to assess the effectiveness of different adhesives in mitigating traumatic injury stress.
This biomedical focus is complemented by Mechkour [16], who models perforated piezo-
electric plates, analyzing how specific structural dimensions influence effective properties,
thus broadening the scope of piezoelectric applications.

Thermoelastic stress analysis (TSA) is also highlighted by Duarte et al. [17], who
created a finite element model to simulate TSA’s effectiveness across different materials and
loading conditions. Their study provides a comprehensive tool for analyzing structural
integrity through thermal imaging, which is increasingly relevant for non-destructive
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testing. Finally, Mubaraki [18] offers an in-depth examination of Rayleigh waves in coated
orthorhombic half-spaces, presenting a pseudo-differential model that captures the essential
characteristics of elastic surface waves—a model with broad implications for seismic and
material sciences.

In summary, this Special Issue presents a compelling array of studies that leverage
mathematical and computational approaches to deepen our understanding of materials
and structural behaviour. From dynamic stability in engineered systems to the nuanced
performance of composites, the research showcased here demonstrates the power of in-
terdisciplinary collaboration and innovation. These contributions not only enhance the
predictive capabilities of computational models but also provide practical insights for
engineers, material scientists, and biomedical researchers alike.

Conflicts of Interest: The authors declare no conflicts of interest.
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