A numerical procedure based on the Generalized Differential Quadrature (GDQ) method is presented to solve the strong form of the differential equations that govern the free vibration problem of some structural elements. The dynamic behavior of several laminated composite doubly-curved shells with arbitrary shape is investigated comparing the results achieved through different Higher-order Shear Deformation Theories (HSDTs) based on an Equivalent Single Layer (ESL) approach. The theoretical framework of the well-known Carrera Unified Formulation (CUF) represents the starting point to develop easily different higher-order models. Starting from regular domains described in principal curvilinear coordinates, a completely arbitrary shape is obtained by means of Non-Uniform Rational B-Splines (NURBS) due to the advantages shown in the well-known isogeometric analysis (IGA). The mapping technique based on the use of blending functions is illustrated to twist the original domain into the distorted one without subdividing the reference domain into sub-elements or finite element (FE). The procedure is extremely general and allows to deal with different boundary condition combinations and stacking sequences. Its validity is proven by the comparison with the results available in the literature concerning arbitrarily shaped plates or obtained through three-dimensional FE models.

The GDQ method for the free vibration analysis of arbitrarily shaped laminated composite shells using a NURBS-based isogeometric approach / Tornabene, Francesco; Fantuzzi, Nicholas; Bacciocchi, Michele. - In: COMPOSITE STRUCTURES. - ISSN 0263-8223. - 154:(2016), pp. 190-218. [10.1016/j.compstruct.2016.07.041]

The GDQ method for the free vibration analysis of arbitrarily shaped laminated composite shells using a NURBS-based isogeometric approach

BACCIOCCHI, MICHELE
2016-01-01

Abstract

A numerical procedure based on the Generalized Differential Quadrature (GDQ) method is presented to solve the strong form of the differential equations that govern the free vibration problem of some structural elements. The dynamic behavior of several laminated composite doubly-curved shells with arbitrary shape is investigated comparing the results achieved through different Higher-order Shear Deformation Theories (HSDTs) based on an Equivalent Single Layer (ESL) approach. The theoretical framework of the well-known Carrera Unified Formulation (CUF) represents the starting point to develop easily different higher-order models. Starting from regular domains described in principal curvilinear coordinates, a completely arbitrary shape is obtained by means of Non-Uniform Rational B-Splines (NURBS) due to the advantages shown in the well-known isogeometric analysis (IGA). The mapping technique based on the use of blending functions is illustrated to twist the original domain into the distorted one without subdividing the reference domain into sub-elements or finite element (FE). The procedure is extremely general and allows to deal with different boundary condition combinations and stacking sequences. Its validity is proven by the comparison with the results available in the literature concerning arbitrarily shaped plates or obtained through three-dimensional FE models.
2016
Arbitrary geometry; Higher-order Shear Deformation Theories; Isogeometric analysis; Laminated composite shells; NURBS; Ceramics and Composites; Civil and Structural Engineering
File in questo prodotto:
File Dimensione Formato  
CS16_4.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 7.05 MB
Formato Adobe PDF
7.05 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14089/142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact